Service TManual
 STEREO TURNTABLE

@PIONEER

MODEL PL-100 COMES IN SEVEN VERSIONS DISTINGUISHED AS FOLLOWS:

Type	Voltage	
KU	AC 120 V only	U.S.A. model (with cartridge)
KUT	AC 120 V only	U.S.A. model (without cartridge)
KCT	AC 120 V only	Canada model (without cartridge)
WE	AC $220 \mathrm{~V}-240 \mathrm{~V}$	Europe model (with cartridge)
WB	AC $220 \mathrm{~V}-240 \mathrm{~V}$	United kingdom model (with cartridge)
WP	AC 220V - 240V	Oceania model (with cartridge)
R	AC 110-120/220-240V (switchable)	General export model (with cartridge)

- This service manual is applicable to the PL-100/WE, WB, WP, PL-100X/WE, WB. For servicing of the other types, please refer to the additional service manual.

CONTENTS

1. SPECIFICATIONS 3
2. PANEL FACILITIES 3
3. DISASSEMBLY
3.1 Panel and Base Plate 4
3.2 Arm Base and Sub-Panel 5
4. MECHANISM DESCRIPTION 6
5. ADJUSTMENT
5.1 Auto-return Adjustment 8
5.2 F.G. Motor Adjustment 8
5.3 Arm-elevation Adjustment 8
6. TROUBLE SHOOTING
6.1 Auto-return Does not Work 9
6.2 Return is Fast (Return at 1 mm Pitch) 10
7. PRECAUTIONS FOR REASSEMBLY
7.1 Areas That Require Lubrication 10
7.2 Precautions for Attachment of Parts and Reassembly 11
8. EXPLODED VIEWS
8.1 Exterior . 12
8.2 Sub-panel 15
9. SCHEMATIC DIAGRAM, P.C. BOARDS CONNECTION DIAGRAM AND PARTS LIST
9.1 Parts List . 16
9.2 Schematic Diagram 17
9.3 P.C. Boards Connection Diagram 18
10. PACKING . 19

1. SPECIFICATIONS

Motor and Turntable

Drive System Belt-drive
Motor . FG servo motor
Turntable Platter 310 mm diam. aluminum alloy die-cast
Speeds . 33-1/3 and 45rpm
Speed Control Range . $\pm 2 \%$
Wow and Flutter Less than 0.045\% (WRMS)
Signal-to-Noise Ratio More than 70dB (DIN-B)
(with Pioneer cartridge model PC-135)

Tonearm

Type Static-balance type, S-shaped pipe arm Effective Arm Length . 221 mm
Overhang. 15.5mm
Usable Cartridge Weight 4 g (min.) to 9 g (max.)

Subfunctions

Auto-return mechanism, Anti-skating force control, Stylus pressure direct-readout counterweight, Cueing device, Strobe light , Free stop hinges

Semiconductors

IC
Transistor . 1
Diode.

Miscellaneous

Power Requirements:
WE, WB, WP models AC $220-240 \mathrm{~V} \sim, 50,60 \mathrm{~Hz}$
Power Consumption . $4 W$
Dimensions 420(W) $\times 96(H) \times 365(D) \mathrm{mm}$ $16-1 / 2(W) \times 3-13 / 16(H) \times 14-3 / 8(D)$ in
Weight
$5.2 \mathrm{~kg} / 11 \mathrm{lb} 8 \mathrm{oz}$

PC-110/II Specifications

Type .Moving magnet type Stylus 0.5 mil diamond (PN-110/11) Output Voltage $3.5 \mathrm{mV}(1 \mathrm{kHz}, 50 \mathrm{~mm} / \mathrm{s}$ Peak velocity, LAT) Tracking Force 1.5 g to 2.5 g (proper 2.2 g) Frequency Response 15 to $25,000 \mathrm{~Hz}$ Recommended Load 50k $\Omega+170 \sim 300 \mathrm{pF}$

Accessories

EP Adapter
. 1
Operating Instructions (French and German
furnished on model for WE)
.1

NOTE:

Specifications and design subject to possible modification without notice, due to improvements.

2. PANEL FACILITIES

(1) SPEED SELECTOR BUTTON

When this button is depressed, the platter will rotate at 45 rpm . Depress for playing 45 rpm records, singles or EP's.
33
. . . . When this button is set to the released position, the platter will rotate at $33-1 / 3 \mathrm{rpm}$. Release for playing $33-1 / 3 \mathrm{rpm}$ records like LP's.

(2) SPEED ADJUSTMENT KNOB

Turn this knob when finely adjusting the speed of the platter. The speed of platter will increase when the knob is turned to the left in the direction of " + "; it will decrease when turned to the right in the direction of "_".
(3) ARM-ELEVATION LEVER

UP ($\boldsymbol{\nabla}$): When this lever is set to this position, the tonearm will rise. Set it to UP before record play and when you want to stop record play while a track is being played or when you want to change over to a different track.
DOWN (\mathbf{I}): When the lever is set to this position the tonearm will be lowered. If it is set to DOWN for record play, the tonearm will be lowered onto the surface of the record, and play will begin.

3. DISASSEMBLY

3.1 PANEL AND BASE PLATE

1. Undo the 4 screws (0) securing the insulator case.
2. Move the tonearm across to the center, and raise the panel a little.
3. Disconnect the circuit board connector (2-Pin).

Fig. 3-1 Remove the panel and base plate

3.2 ARM BASE AND SUB-PANEL

1. Undo the 5 screws (1) securing the arm base.
2. Undo the 2 screws (2) securing the sub-panel.
3. Undo the 3 screws
securing the center shaft.

Fig. 3-2 Remove the arm base and sub-panel

4. MECHANISM DESCRIPTION

PL-100 MECHANISM OPERATING

The PL-100 is equipped with auto-return only. Fig. $4-1$ shows the PL-100 in the stationary state with the tonearm back in the arm rest.

Fig. 4-1 Mechanical parts name

* Start of Play

1. When the tonearm is moved across to the disc, the PU plate located below in the arm base is also moved.
2. Lever A is moved over by pin A connected to this PU plate, resulting in lever B being unlocked (Fig. 4-3).
3. At the same time that lever B is unlocked, the microswitch is turned on (power on), and the motor commences to rotate (Fig. 4-3).

Fig. 4-2 PU plate

Fig. 4-3 Start of play

* AUTO-RETURN DETECTION

1. When the stylus nears the center shaft, pin B contacts plate A (Fig. 4-4).
2. Plate A pushes plate C by an amount directly proportional to the amount of movement of the tonearm (Fig. 4-5).
3. Plate D atop plate C is moved toward gear B by the movement of plate \mathbf{C}.

Fig. 4-4 Auto-return detection 1

Fig. 4-5 Auto-return detection 2

Fig. 4-6 Auto-return detection 3

Fig. 4-7 Auto-return detection 4
4. The front end of plate D moves approximately 0.1 mm when the stylus is advanced 1 mm toward the center shaft by one revolution of the record.
5. The tooth of gear B has the dimensional difference shown in Fig. 4-6.
6. Plate D is pushed back by this dimensional difference at a stylus movement of within 1 mm per revolution of the record.
7. When the stylus enters the lead-out groove in the record at the end of the performance, it is moved 4 mm toward the center shaft by one revolution of the record.
8. The end of plate D contacts the protruding section of gear B (Fig. 4-7).
9. Gear B and gear A are engaged, and gear A is turned by rotation of the turntable.

* AUTO-RETURN

1. Gear A and B are engaged each other by the auto-return detector and gear A consequently is turned in the counter-clockwise direction.
2. Plate B is then shifted across towards the tonearm due to the groove in the underneath of gear A.
3. The edge of plate B pushes against lever C to force the arm elevation upwards.
4. Plate B continues to shift across to push-against pin B on the PU plate, thereby returning the tonearm back to the arm rest.
5. At this stage plate B commences to return toward the center shaft guided by the groove in gear A.

Fig. 4-8 Auto-return 1
6. When the edge of plate B separates from lever C, the arm elevation is lowered to drop the tonearm back into the arm rest.
7. And at the same time that the tonearm is returned to the arm rest, pin A returns lever A back to the stationary state.
8. Plate B continues to move toward the center shaft and pushes against pin C on lever B. Lever B thus switches the microswitch off (power off), and is then locked by lever A, thereby bringing a complete operation cycle to an end.

Fig. 4-9 Auto-return detection 2

5. ADJUSTMENT

5.1 AUTO-RETURN ADJUSTMENT

1. Turn the auto return adjustment screw full around clockwise.
2. Move the tonearm right across toward the center.
3. When the auto return adjustment screw is turned back a little at a time counter clockwise, the tonearm will commence to return to the outer circumference.
4. Stop turning the adjustment screw once the stylus tip is 33 mm away from the center shaft.
5 . Once the above adjustment procedure has been completed check that the tonearm returns automatically as designed.

5.2 F.G. MOTOR ADJUSTMENT

1. Turn the power on and start the turntable platter rotating.
2. Turn the speed adjustment knob around to the mechanically center position.
3. Adjust VR2 and VR3 in the motor assembly so that the stroboscope appears to be stationary. Again this adjustment is performed from below.
4. Adjust VR2 for 33 rpm speed, and VR3 for 45 rpm .

5.3 ARM-ELEVATION ADJUSTMENT

To proceed with the elevation sheet height adjustment, insert the hexagonal wrench (for 3 mm) into the hole at the front of the EV sheet and rotate it clockwise to reduce the height and coun-ter-clockwise to increase the height. The height of the stylus tip from the record surface is 7 $\pm 2 \mathrm{~mm}$.

Fig. 5-1 Auto return adjustment

Fig. 5-2 Motor adjustment

Fig. 5-3 Arm-elevation adjustment

; 6. TROUBLE SHOOTING

Use the following directions to find the cause of each type of breakdown. Improperly adjusted units should be completely readjusted.

6-1 AUTO-RETURN DOES NOT WORK

Plate D does not follow the plate C

After starting, incomplete reset of the plate C. See (1)

The curved section of the plate C is deformed.

The inner areas of records can not be tracked.

Arm lead wire is caught on something.

PU cord is touching the PU plate.

PU plate is touching the leaf spring (plate D)

Operation of the plate A is not smooth.

Procedure for Dealing with Item (1)

After performing the return operation, if the curved section of the plate C and curved section of the plate D are not in contact with surfaces (A) and (B) respectively of the cam, reset will be incomplete and the starting position will be late. As a result, the return function may not operate at times. In this case, bend the plate C (C) so that dimension A is 0.5 mm or larger.

Fig. 1-6 Incomplete plate D and plate C.

6.2 RETURN IS FAST (RETURN AT 1mm PITCH)

Protrusions on the pinion gear section. See (2)

Procedure for Dealing with Item (2)

If there are rough areas of plastic protruding from the (A) section of the protruding section of the pinion gear, the return function may operate at a pitch of only 1 mm . In this case, remove the plastic protrusions completely (Fig. 6-2).

Fig. 6-2 Elimination of pinion gear protrusions.

7. PRECAUTIONS FOR REASSEMBLY

Follow these directions and precautions when reassembling a unit after completing repairs. Be sure to lubricate as required, make no mistakes when attaching parts, and avoid all other careless mistakes that may be the cause of trouble later on.

7.1 AREAS THAT REQUIRE LUBRICATION

 NOTE:Types of lubricants and areas where they are used are listed in table 1.

Table 1

Type of Oil	Table 1
Silicon Oil \#50000	raising shaft
GYA-008	all other areas

Lubrication points are specified for oils other than GYA-008. Never use a different type of oil.

- Cam Section

Apply oil to the heart-shaped grooved section (rear side of the cam) and lock plate sliding section in order to minimize wear on the sliding section and the burden on the mechanism.

- Driving Plate Assembly

Decrease the burden on the mechanism and the wear on the sliding section.

Fig. 7-1 Driving panel assembly section Switch Locker Section

- Switch Locker Section

Apply oil to the switch locker (opening) and sub-panel base sliding section to decrease the burden on the mechanism.

When applying oil to the opening (shaft hole), do not apply any oil $2-3 \mathrm{~mm}$ from the bottom surface. If oil is applied $2-3 \mathrm{~mm}$ within the bottom surface, it may come out the bottom and go between the switch lever and sub-panel base causing the switch lever to operate ineffectively.

Fig.7-2 Switch locker section

- EV Lever Unit Section

Apply oil to the sliding sections of leaf spring (A) and EV lever unit to decrease the burden on the mechanism.

Fig. 7-3 EV lever unit section

- Elevation Cam Section

Apply oil to the elevation cam and sliding section of the raising shaft to decrease the burden when operated.

Fig. 7-4 Elevation cam section

- EV Sheet Section

Apply oil to the raising shaft and sliding section of the bearing to assure stability in the elevation lowering speed.

Fig. 7-5 EV sheet section

7.2 PRECAUTIONS FOR ATTACHMENT OF PARTS AND REASSEMBLY

- Cam Assembly Attachment

The cam assembly is attached by letting the lock plate go in the direction (A) as shown in figure 7-6.

Fig. 7-6 Cam assembly attachment

- PU Plate Attachment

Push the PU plate into place so that the PU plate bearing section touches the revolution shaft attachment nut. Installation direction is as shown in figure 7-7. Note that there is a difference between auto-return and fully automatic models.

Fig. 7-7 PU plate attachment

- Anti-Skating Knob Attachment

When installing the AS knob, put the AS knob rib against the AS knob revolution control stopper (attached to the arm base) and affix with the screw. As the stopper may break, be sure to press the AS knob down firmly when installing it.

Fig. 7-8 AS knob attachment

- Arm Base Attachment

When attaching the arm base section to the mechanism section, put the mechanism section switch locker and switch lever in the locked position and verify that the tonearm is in the arm rest location. Also be sure to put the manual elevation lever in the up position and check that the PU plate shaft is in the position shown in figure 7-9.

Fig. 7-9 Arm base attachment

8. EXPLODED VIEWS

8.1 EXTERIOR

NOTE:

- Parts without part number cannot be supplied.
- The Δ mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identi-
Parts list cal designation.

Key No.	Part No.	Description	Key No.	Part No.	Description
1.	PNX-151	Panel	46.	PDE-044	PU cord
2.	PAM-068	Name plate	47.	PNV-034	Dust cover
3.	PAM-069	Name plate	48.	PXB-155	Hinge assembly
4.		Lens holder	49.	PNX-062	Foot case
5.	PNX-051	Lens	50.	PBH-264	Foot spring (A)
6.		Mirror	51.	PBH-265	Foot spring (B)
7.	PAC-043	Push button	52.	PEB-163	Rubber cushion
8.	PAC-047	Knob	53.	PBA-099	Screw
9.		Base plate	54.	PXA-841	Weight assembly
10.		Sub-panel assembly	55.		Button guide C
11.	PNR-140	Turntable platter	56.		Angle
12.	KEB-004	Belt	57.	PSG-020	Push switch
13.	PEB-150	Rubber mat	58.	PBH-261	Spring
14.	PYY-071	Motor assembly	59.	PCS-016	Variable resistor
15.		Motor pulley	60.	PEL-042	Neon lamp
16.	PEB-172	Rubber cushion	61.	PNX-074	Neon lamp base
17.	PBA-112	Screw	62.		Power supply assembly
18.	PBA-108	Screw M 3×25	63.	PXB-177	Shaft assembly
19.	PBA-109	Screw	64.	PNC-132	Plate
20.	PPD-603	Arm assembly	65.	VBZ30P100FMC	Screw
21.	PXA-792	Head shell assembly	66.	PMZ30P050FMC	Screw
22.	PBA-905	Screw	67.	PPZ30P080FMC	Screw
23.	PNX-152	Arm base	68.	PLZ40P120FMC	Screw
24.	PAC-045	AS knob	69.	PDZ30P050FMC	Screw
25.	PNX-054	AS washer	70.		Cord clamper
26.	PNX-055	Base lever	71.	PDZ30P080FMC	Screw
27.	PBH-236	AS spring	72.	ZMR30H120FZK	Screw
28.	PBE-012	AS spring washer	73.	ZMD40H080BT	Screw
29.	PBF-005	AS knob washer	74.		Terminal
30.	PXB-094	Arm rest assembly	75.	VBZ30P080FMC	Screw
31.	PXB-107	EV sheet assembly	76.	IPZ30P100FMC	Screw
32.	PBH-237	EV spring	77.	YE30S	E type washer
33.	PXT-382	EV lever unit	78.	YE70S	E type washer
34.	PNX-059	EV cam	79.	PXT-910	Cartridge (without stylus)
35.	PBH-238	EV cam spring	80.	PBH-266	Foot spring (C)
36.	PBK-042	EV plate spring (A)	PL-100X		
37.	PXT-413	EV plate spring (B) unit			
38.	RNX-060	PU plate (A)	Key No.	Part No.	Description
49.		Set screw		Part No.	Description
40.	PNX-061	PU plate (B)	1.	PNX-155	Panel
41.	PBH-259	PU plate spring	2.	PAM-070 PAM-071	Name plate Name plate
$\triangle 42$	PTT-107	Power transformer	20.	PPD-609	Arm assembly
- 43.	PDG-021	Connector assembly AC power cord (WE)	21.	PXA-791	Head shell assembly
	RDG-022	AC power cord (WB)	23.	PNX-156	Arm base
	PDG-020	AC power cord (WP)	24.	PAC-041	AS knob
45.	PEC-056	Strain relief			

| 4 | 5 | 6 |
| :--- | :--- | :--- | :--- |

8.2 SUB-PANEL

Parts list

Key No.	Part No.	
1.		Description
2.	YE40S	Sub-panel unit
3.	PNX-030	Switch lever
4.	PNX-031	Plate
5.	PXT-355	Lever unit
6.		
7.	PNC-126	Operation lever assembly
8.	PBH-224	Start plate
9.		Start plate spring
10.	PMK26P100FMC	EV cam

Key No.	Part No.	Description
11.	PNX-035	Lock plate
12.	PBH-225	Lock plate spring
13.	PNX-036	Cam
14.	PYY-058	Return signal unit
15.	PSF-009	Microswitch
16.	PDE-079	Connector assembly
17.	PBA-103	Screw
18.	YE15S	E type washer

9．SCHEMATIC DIAGRAM，P．C．BOARDS CONNECTION DIAGRAM AND PARTS LIST

NOTE：

－When ordering resistors，first convert resistance values into code form as shown in the following examples．
Ex． 1 When there are 2 effective digits（any digit apart from 0），such as 560 ohm and 47 k ohm（tolerance is shown by $J=5 \%$ ，and $K=10 \%$ ）．

$560 \Omega-56 \times 10^{1}-561$	$R D^{1 / 4} P S$ 國回 J
$47 \mathrm{k} \Omega=47 \times 10^{3}-473$	$R D^{1 / 4} P S$［4］ 7 ］
$0.5 \Omega-0 R 5$	RN2H［⿴囗
$1 \Omega-010$	RS1P 0 回 K

Ex． 2 When there are 3 effective digits（such as in high precision metal film resistors）．
$5.62 k \Omega \quad 562 \times 10^{1} 5621$
$R N^{1 / 4}$ SR［5］［2］F
－The \triangle mark found on some component parts indicates the importance of the safety factor of the part．Therefore，when replacing，be sure to use parts of identical designation．

9．1 PARTS LIST

Power Supply Assembly

Part No．	Symbol \＆Description	
2SC1959－Y	01	
PCX－010	D1	
WZ－120	D2	
CEA 102M 25L	C2	
CKDYF 103250	C3	
$\triangle \mathrm{PCL}-039$	C5	
RS2PF 361 J	R1	
RD $1 / 2 \mathrm{PS} 152 \mathrm{~J}$	R2	
RS2HSFB 333JL	R4	
PCS－016	VR1	Volume
PSG－020		Push switch
©PEL－042		Neon lamp
PBH－261		Push button spring
（1PEK－039		Fuse

Appearance of Transistors ICs

Motor Assembly（PYY－071）
Part No．
Symbol \＆Description
2SD947
EVN－31AA00B24
ERD－78TJ103
ERO－25CKF2002
ERO－25CKF6201 R3

10. PACKING

Parts list

Key No.
Part No.
PHA-107
2. PHA-108
3. PHG-414
4. PNX-064
5. PBA-100
6.
7. N93-603
8. PXA-841
9. PRB-162

PRD-054

Description
Side protector L
Side protector R
Packing case
Turntable platter packing Screw

Viny bag
45 adaptor
Weight assembly
Operating instructions Operating instructions (WE) (French/German)

PL-100X

Key No. Part No.
Description
3. PHG-416

Packing case
9. PRB-167

Operating instructions
PRD-055 Operating instructions (WE)
(French/German)

