STEREO RECEIVER RX-550

SERVICE MANUAL

G model only

IMPORTANT NOTICE

This manual has been provided for the use of authorized YAMAHA Retailers and their service personnel. It has been assumed that basic service procedures inherent to the industry, and more specifically YAMAHA Products, are already known and understood by the users, and have therefore not been restated.
WARNING: Failure to follow appropriate service and safety procedures when servicing this product may result in personal injury, destruction of expensive components, and failure of the product to perform as specified. For these reasons, we advise all YAMAHA product owners that any service required should be performed by an authorized YAMAHA Retailer or the appointed service representative.
IMPORTANT: The presentation or sale of this manual to any individual or firm does not constitute authorization, certification or recognition of any applicable technical capabilities, or establish a principle-agent relationship of any form.
The data provided is believed to be accurate and applicable to the unit(s) indicated on the cover. The reseach, engineering, and service departments of YAMAHA are continually striving to improve YAMAHA products. Modifications are, therefore, inevitable and specifications are subject to change without notice or obligation to retrofit. Should any discrepancy appear to exist, please contact the distributor's Service Division.
WARNING: Static discharges can destroy expensive components. Discharge any static electricity your body may have accumulated by grounding yourself to the ground buss in the unit (heavy gauge black wires connect to this buss).
IMPORTANT: Turn the unit OFF during disassembly and part replacement. Recheck all work before you apply power to the unit.

CONTENTS

TO SERVICE PERSONNEL 1
REAR PANELS 1~2
SPECIFICATIONS 3~4
INTERNAL VIEW 4
DISASSEMBLY PROCEDURES 5
ADJUSTMENT IN POWER AMPLIFIER SECTION
ADJUSTMENT IN TUNER SECTION 6~9
TEST MODE 9
BLOCK DIAGRAM 10~11
PRINTED CIRCUIT BOARD 12~21
INTERCONNECT WIRING DIAGRAM 22~23
DISPLAY DATA 24
μ-COM DATA 25~26
FRONT END PACK 27
SCHEMATIC DIAGRAM 28~30
PARTS LIST 31~40
REMOTE CONTROL TRANSMITTER 41

- TO SERVICE PERSONNEL

1. Critical Components Information.

Components having special characteristics are marked and must be replaced with parts having specifications equal to those originally installed.
2. Leakage Current Measurement (For 120V Models Only). When service has been completed, it is imperative to verify that all exposed conductive surfaces are properly insulated from supply circuits.

- Meter impedance should be equivalent to 1500 ohm shunted by $0.15 \mu \mathrm{~F}$.
- Leakage current must not exceed 0.5 mA .
- Be sure to test for leakage with the AC plug in both polarities.

- POLARIZATION (U, C models only)

This receiver product is equipped with a polarized alternat-ing-current line plug (a plug having one blade wider than the other). This plug will fit into the power outlet only one way. This is a safety feature.

WARNING: CHEMICAL CONTENT NOTICE!

The solder used in the production of this product contains LEAD. In addition, other electrical/electronic and/or plastic (where applicable) components may also contain traces of chemicals found by the California Health and Welfare Agency (and possibly other entities) to cause cancer and/or birth defects or other reproductive harm.

DO NOT PLACE SOLDER, ELECTRICAL/ELECTRONIC OR PLASTIC COMPONENTS IN YOUR MOUTH FOR ANY REASON WHATSOEVER!

Avoid prolonged, unprotected contact between solder and your skin! When soldering, do not inhale solder fumes or expose eyes to solder/flux vapor!

If you come in contact with solder or components located inside the enclosure of this product, wash your hands before handling food.

REAR PANELS

U model

V C model

V R model

V A model

- B model

- G model

SPECIFICATIONS

FM SECTION

Tuning Range
U, C, models 87.5 to 107.9 MHz
A, B, G, R models 87.5 to 108.0 MHz
50dB Quieting Sensitivity (IHF, 75 Ω)Except Europe model
Mono $1.55 \mu \mathrm{~V}$ (15.1 dBf)
Stereo $.21 \mu \mathrm{~V}$ (37.7dBf)
Usable Sensitivity (75 Ω)
(30dB S/N Quieting, $1 \mathrm{kHz}, 100 \%$ mod.) Except G model $0.8 \mu \mathrm{~V}(9.3 \mathrm{dBf})$
DIN, Mono ($\mathrm{S} / \mathrm{N} 26 \mathrm{~dB}$) G model $0.9 \mu \mathrm{~V}$
DIN, Stereo ($\mathrm{S} / \mathrm{N} 46 \mathrm{~dB}$) G model $24 \mu \mathrm{~V}$
Image Response Ratio
Except G model 45dB
G model 75dB
IF Response Ratio Except G model 80dB
G model 75dB
Spurious Response Ratio 70 dB
AM Suppression Ratio 55 dB
Capture Ratio 1.5 dB
Alternate Channel Selectivity Except G model 85dB
Selectivity (two signals, 40 kHz Dev.) G model 70dB
Signal-to-Noise Ratio (IHF) Mono/Stereo Except G model 81/76dB
(DIN-weighted, 40 kHz Dev.) Mono/Stereo G model 75/70dB
Harmonic Distortion (1 kHz)Mono/StereoExcept G model . 0.1/0.2\%Mono/Stereo (40 kHz Dev.)-
G mode $0.1 / 0.2 \%$
Frequency Response
20 Hz to 15 kHz $.0 \pm 1.5 \mathrm{~dB}$
Stereo Separation (1 kHz)
Except G model 50dB
G model (40 kHz Dev.) 50dB
AM SECTION
Tuning Range
U, C, A models 530 to $1,710 \mathrm{kHz}$
A, B, G, R models 531 to $1,611 \mathrm{kHz}$
Usable Sensitivity $100 \mu \mathrm{~V} / \mathrm{m}$
Selectivity 32dB
Signal-to-Noise Ratio 50dB
Image Response Ratio 40dB
Spurious Response Ratio 50dB
Harmonic Distortion (400 Hz) 0.3\%
AUDIO SECTION
Output Level/Impedance FM (30% mod., 1 kHz) Except G model $700 \mathrm{mV} / 2.9 \mathrm{k} \Omega$
G model (40 kHz Dev.) 年V/3.3k Ω
AM (30\% mod., 400Hz)
Except G model $200 \mathrm{mV} / 2.9 \mathrm{k} \Omega$
G model (40 kHz Dev.) $150 \mathrm{mV} / 3.3 \mathrm{k} \Omega$

- GENERAL	
Power Supply	
U, C models	. AC 120V, 60 Hz
A, B models	. AC $240 \mathrm{~V}, 50 \mathrm{~Hz}$
G model	AC $230 \mathrm{~V}, 50 \mathrm{~Hz}$
R model	AC 110/120/220/240V, $60 / 50 \mathrm{~Hz}$
Power Consumption	
U model	. 150W
C model	. . 310 W
G model	. .130W
A, B, R models	.170W
AC Outlets	
Switched x 2	
U, R models 200 W max. (Total)	
C, G models	. .100W max. (Total)
Switched x 1	
A, B models . 100 W max.	
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$\begin{array}{r} \left(17-1 / 8^{\prime \prime} \times 5-7 / 8^{\prime \prime} \times 15-5 / 16^{\prime \prime}\right) \end{array}$
Weight	. . 9 kg (19 lbs. $13 \mathrm{oz}$.)
Accessories	.AM loop antenna $\times 1$
	Indoor FM antenna $\times 1$
	Remote Control Transmitter $\times 1$
	Battery (size "AA," R06) $\times 2$

* Specifications subject to change Without notice.
U \qquad USA model
C
\qquad
A Australian model
B British model GEuropean model R General model

DIMENSIONS

Units : mm (inch)

INTERNAL VIEW

(1) POWER TRANSFORMER
(2) MAIN CIRCUIT BOARD (2)
(3) MAIN CIRCUIT BOARD (1)
(4) TUNER CIRCUIT BOARD
(5) MAIN CIRCUIT BOARD (4)

6 FUNCTION CIRCUIT BOARD (2)
(7) 8 bit μ-COM (IC305: M50747)

8 FUNCTION CIRCUIT BOARD (1)

DISASSEMBLY PROCEDURES

(Remove parts in the order as numbered.)

1. Removal of Top Cover

Remove 7 screws ((1)) in Fig. 1.
2. Removal of Bottom Cover

Remove 20 screws ((2)) in Fig. 1.
3. Removal of Front Panel

Remove 3 screws ((3)) in Fig. 1.

CAUTION FOR SERVICING-USE ONLY COPPER COLORED SCREWS (3×10 ø8) FOR POINTS INDICATED BY ARROWS (\Leftrightarrow).

Fig. 1

ADJUSTMENT IN POWER AMPLIFIER SECTION

IDLING CURRENT ADJUSTMENT

When replacing the power and drive transistors, adjust idling current. After the power has been turned on, age about 10 minutes in non loaded condition. Adjust VR101 (Lch) and VR102 (Rch) so that the voltage across the terminals of R135 (TP1 - TP2) and R136 (TP3 - TP4) come to $10 \mathrm{mV} \pm 4 \mathrm{mV}$ DC.

Test points		Adjustment point	Rating
Lch	Across the terminals of R135 (TP1-TP2)	VR101	$10 \mathrm{mV} \pm 4 \mathrm{mV} \mathrm{DC}$
Rch	Across the terminals of R136 (TP3-TP4)	VR102	$10 \mathrm{mV} \pm 4 \mathrm{mV} \mathrm{DC}$

- ADJUSTMENT IN TUNER SECTION

- Measuring Instruments

FM signal generator (FM SG)
Stereo signal generator (SSG)
AM signal generator (AM SG)
Distortion meter (DIST. M)
AC voltmeter (ACVM)
DC voltmeter (DCVM)
Oscilloscope
Low pass filter (YLF-15, fc=15kHz) Oscillator

Adjustment points

Before Adjustment

1) For $\mathrm{dB}, 1 \mu \mathrm{~V}=0 \mathrm{~dB} \mu$ applies.

Example : $60 \mathrm{~dB} \mu=1 \mathrm{mV}$
2) 100% modulation means that the frequency deviation is 75 kHz (R, U, C, A, B)
3) For the G model, Frequency Deviation is 40 kHz .
4) For the G, A models, install the Matching Transformer and connect FM SG.

- Connection diagram (Measuring instruments)

1) Discriminator balance adjustment

2) Stereo distortion adjustment/separation adjustment

3) Monaural distortion adjustment

4) Sensitivity Verification

Step	Adjustment item	Signal (ANT IN)	Reception frequency	Adjusted point	Test point	Rating
1	Rough adjustment of discriminator balance	FM ANT (75 ${ }^{2}$) 98.1 MHz $70 \mathrm{~dB} \mu$ MONO 100 Hz 100\% modulation	$\begin{aligned} & 98.1 \mathrm{MHz} \\ & { }^{(\mathrm{A}-4)} \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \text { (IC side core) } \end{aligned}$	Both ends of R25	DC OV $\pm 100 \mathrm{mV}$
2	Rough adjustment of monaural distortion	Same as Step 1.	$\begin{gathered} 98.1 \mathrm{MHz} \\ { }^{*}(\mathrm{~A}-4) \end{gathered}$	T1 (Antenna side core)	REC OUT L, R	Minimize the distortion.
3	Fine adjustment of discriminator balance	Same as Step 1.	$\begin{gathered} 98.1 \mathrm{MHz} \\ { }^{*}(\mathrm{~A}-4) \end{gathered}$	T1 (IC side core)	Both ends of R25	DC OV $\pm 50 \mathrm{mV}$
4	Fine adjustment of monaural distortion	Same as Step 1.	$\begin{gathered} 98.1 \mathrm{MHz} \\ { }^{(\mathrm{A}-4)} \end{gathered}$	T1 (Antenna side core)	REC OUT L, R	Minimize the distortion (to 52 dB or less).
5	Verification of discriminator balance	Same as Step 1.	$\begin{gathered} 98.1 \mathrm{MHz} \\ { }^{*}(\mathrm{~A}-4) \\ \hline \end{gathered}$	T1 (IC side core)	Both ends of R25	DC OV $\pm 50 \mathrm{mV}$
6	Stereo distortion	FM ANT (75 2) 98.1MHz 70dB μ Stereo (L or R) 1kHz, 100\% modulation	98.1 MHz * (A-4) *Tuning mode should be AUTO.	Front end IFT	REC OUT L, R	Distortion should be minimized (40 dB or less) * STEREO indicator should light. * Note that over-turning IFT will reduce sensitivity.
7	Verification of monaural distortion	FM ANT (75 ${ }^{\text {(}}$) 98.1 MHz $70 \mathrm{~dB} \mu$ MONO 1kHz, 100\% modulation	$\begin{aligned} & 98.1 \mathrm{MHz} \\ & { }^{(\mathrm{A}-4)} \end{aligned}$,	REC OUT L, R	48 dB or less

Step	Adjustment item	Signal (ANT IN)	Reception frequency	Adjusted point	Test point	Rating
8	Verification of sensitivity	FM ANT (75Ω) 88.1 MHz 98.1 MHz 106.1 MHz	88.1 MHz * (A-6) 98.1 MHz * (A-4) 106.1 MHz * (A-7)		ANT (75s)	Set the tuning mode to MAN'L MONO. S / N should be 30 dB at each frequency of 88.1 MHz , 98.1 MHz , and 106.1 MHz . Check to ensure that the voltage at the ANT terminal is $3 \mathrm{~dB} \mu$ or less.
9	Separation	FM ANT (75Ω) 98.1 MHz $70 \mathrm{~dB} \mu$ Stereo (L or R) 1 kHz , 100\% modulation	$\begin{aligned} & 98.1 \mathrm{MHz} \\ & \text { *(A-4) } \end{aligned}$	VR2	REC OUT L, R	With SSG output at L or R, the signal leakage level at the other channel should be minimized. 36 dB or more
10	Signal meter	FM ANT (75 2) 98.1 MHz $45 \mathrm{~dB} \mu$ MONO 1kHz 30% modulation	$\begin{aligned} & 98.1 \mathrm{MHz} \\ & { }^{(\mathrm{A}-4)} \end{aligned}$	VR1		Adjust so that all signal meters light.
		-10dB μ or less				Check to ensure that singal meters turn OFF.
11	Verification of auto tuning	FM ANT (75Ω) 98.1 MHz $23 \mathrm{~dB} \mu$ Stereo (L or R) 1 kHz , 30% modulation	98.1 MHz			- Automatic reception should be available when the tuning key is moved UP and DOWN. - The stereo indicator should light. - Voice muting should be applied during tuning.

* : Execution of MAKER PRESET (Refer to TEST MODE on page 9.) will facilitate setting reception frequency for adjustment.

AM Adjustment (This should be done after FM adjustment.)

- Connection Diagram (Measuring instruments)

1) Adjustment of sensitivity

Step	Adjustment item	Signal (ANT IN)	Reception frequency	Adjusted point	Test point	Rating
${ }^{1}$	Adjustment of sensitivity	AM ANT 630 kHz $50 \mathrm{~dB} \mu$ 400 Hz , 30\% modulation	$\begin{aligned} & 630 \mathrm{kHz} \\ & *(\mathrm{~B}-1) \end{aligned}$	T2	REC OUT	Wave detection output should be maximized.
2	Verification of sensitivity	AM ANT 630 kHz 1080 kHz 1440 kHz $400 \mathrm{~Hz}, 30 \%$ modulation	630 kHz * (B-1) 1080 kHz * (B-2) 1440 kHz * (B-3)		AM ANT	Distortion should be 10% or less at each frequency. Check to ensure that the voltage at the ANT terminal is $54 \mathrm{~dB} \mu$ or less.
3	Verification of signal meter	AM ANT 1080 kHz $90 \mathrm{~dB} \mu$	$\begin{gathered} 1080 \mathrm{kHz} \\ { }^{*}(\mathrm{~B}-2) \end{gathered}$			All signal meters should light.
		-10dB μ or less				All signal meters should turn OFF.
4	Verification of auto tuning	AM ANT $60 \mathrm{~dB} \mu$				Auto reception should be available when the tuning key is moved UP and DOWN.

TEST MODE

CAUTION : Before setting to the TEST mode, write down the existing preset memory content of the Tuner in a table as shown below. (This is because setting to the TEST mode will cause the memory content to be as factory set, i.e., all the preset memory by the user will be erased.)

- How to start

Turn the POWER switch ON while pressing the PRESET STATION keys No.1, 2 and 3 simultaneously, and the unit After that, the DISPLAY for the display check. (ALL LIGHTS mode becomes effective immediately after starting.)

- Content of the TEST mode key

PRESET STATION "1" key: ALL LIGHTS ON mode PRESET STATION "2" key : LIGHTS OFF mode
PRESET STATION " 3 " key : 7 -segment (figure) display mode
PRESET STATION " 8 " key : The
PRODUCT mode when the TEST mode is cancelled.
?
Mode to display only 1 digit of 7 segnents
(Itherers remain OFF.)

- How to cancel

The normal operation is restored when the POWER switch is turned OFF or the PRESET STATION key No. 8 pressed. At the same time, the factory preset memory is also restored.

Preset group	P1	P2	P3	P4	P5	P6	P7	P8
A/C/E	87.5 MHz	90.1 MHz	95.1 MHz	${ }^{98.1} 1 \mathrm{MHz}$	108MHz	88.1 MHz	106.1 MHz	$\begin{gathered} 107, \mathrm{MHz} \\ (\mathrm{U}, \mathrm{C}) \\ (\mathrm{R}, \mathrm{~A}, \mathrm{BH}, \mathrm{G}) \\ \hline \end{gathered}$
B/D	630 kHz	1080kHz	1440 kHz		$\left.\left\lvert\, \begin{array}{c} 1710 \mathrm{KHz} \\ (1, \mathrm{C}) \\ (\mathrm{R}, 1 \mathrm{kHz} \\ (\mathrm{A}, \mathrm{~B}, \mathrm{G}) \end{array}\right.\right)$	900 kHz	1350kHz	1400 kHz (U, C) 1404 kHz $(\mathrm{R}, \mathrm{A}, \mathrm{B}, \mathrm{G})$

For all the above, AUTO TUNING and AUTO STEREO are selected as the TUNING mode.

- BLOCK DIAGRAM

RX－550

－PRINTED CIRCUIT BOARD（Foil side）

Note）文字面 ：Component side	TUNER C．B（1）
	Except G model

MAIN C．B（ 4 ）
FROM ：MAIN（3）\rightarrow MII
\！
MAIN C．B（5）

TO：MAIN（4）
FROM ：FUNCTION（2）

A

- PRINTED CIRCUIT BOARD (Foil side)

RX－550

－PRINTED CIRCUIT BOARD（Foil side）

Note）文字面：Component sid

FUNCTION C．B（3）

－U，C models
MAIN C．B（ 2 ）

- PRINTED CIRCUIT BOARD (Foil side)

MAIN C. B (2)

- INTERCONNECT WIRING DIAGRAM

DISPLAY DATA

- V501: LCD8159B1JP

No.	COM1	COM2
1	-	COM
2	COM	-
3	PRESET	1 d
4	1 ef	1 g
5	1 a	1 ij
6	1 bc	1 h
7	MEMORY	2 d
8	2 f	2 e
9	2 a	2 g
10	2 b	2 c

No.	COM1	COM2
11	3 bc	4 d
12	4 f	4 e
13	4 a	4 g
14	4 b	4 c
15	AUTO	5 d
16	5 f	5 e
17	5 a	5 g
18	5 b	5 c
19	FM, DP	6 d
20	6 f	6 e

No.	COM1	COM2
21	6 a	6 g
22	6 b	6 c
23	AM	7 d
24	7 f	7 e
25	7 a	7 g
26	7 b	7 c
27	SLEEP	STEREO
28	1 l	-
29	M1, M2	-
30	M3	-

No.	COM1	COM2
31	M4	-
32	M5	-
33	M6	-
34	M7	-
35	M8	-
36	M9	-
37	M10	-
38	M11	-
33	M12	-
40	M13	-

1): $\begin{array}{lllll}0 & 40 & 60 & 80 & 100\end{array}$

IC DATA

IC305 : M50747
8bit μ-COM

Tuner Market Select (Table A)

A1 (34)	A2 (33)	Market
0	0	J
1	0	A, B, G
0	1	U, C
1	1	R

Pin No.	Pin name	Function Name	1/0	Description
1	Vac	Vcc	-	+5V
2	P67	STBY	0	LED for Stand By
3	P66		0	N.C.
4	P65		0	\int N.C.
5	P64	VRLED	0	LED for Volume, ON/OFF (N.C.)
6	P63	D3	0	KEY DIGIT
7	P62	D2	0	
8	P61	D1	0	
9	P60	D0	0	
10	P47	K3	1	KEY IN
11	P46	K2	1	
12	P45	K1	1	
13	P44	K0	1	
14	P43	PSW	1	POWER SW
15	P42		110) N.C.
16	P41		$1 / 0$	
17	P40		110	
18	P37/İRDY		0	
19	P36/CLK	CL	0	LC7583, Clock
20	P35/TXD	DATA	0	LC7583, Data
21	P34/RXD		$1 / 0$	N.C.
22	P33/CNTR	CE	0	LC7583, Chip enable
23	P32/INT2	INH	0	LC7583, Drive OFF
24	P31	Area	0	INITIAL High
25	P30	CLK	0	LC7583, External Clock
26	INT1	REM	1	Remote Control Input
27	CNVSS	CN Vss	-	GND
28	RESET	$\overline{\text { RES }}$	1	Reset
29	XIN	XIN	-) Clock (8 MHz)
30	X OUT	X OUT	-	
31	ϕ		0	N.C.
32	Vss	Vss	-	GND
33	P57	A2	1) Tuner Market Select (Table A)
34	P56	A1	1	
35	P55	ST	1	Stereo
36	P54	STSIG	1	Stop Signal (Station Detector)
37	P53	STOUT	1	IF Count OK signal
38	P52		1	N.C.
39	P51	REM	1	Remote Control Input
40	P50	PODN	1	Power Down Detect
41	P17	STRQ	0	IF Count Request
42	P16	CE	0	LM7000, Chip enable
43	P15	CL	0	LM7000, Clock
44	P14	DA	0	LM7000, Data
45	P13	$\overline{\text { MONO }}$	0	Monoural
46	P12	TMUTE	0	Tuner Mute
47	P11	V2	0	$\begin{array}{\|ll} \hline) \text { Video Select (Not Use) } & \begin{array}{l} \text { V2: VCR } \\ \text { V1:LD } \end{array} \\ \hline \end{array}$
48	P10	V1	0	
49	P07	POW	0	Main Relay ON
50	P06	PLO	0	Player RS Control
51	P05	MUTE	0	Muting
52	P04	AMUT	0	N.C. (Audio Mute, -20 dB)
53	P03	VLDN	0) Volume Control UOWN
54	P02	VLUP	0	
55	P01	ISL	0	$\begin{array}{\|c\|l\|} \hline) \text { Input Selector Control } & \begin{array}{l} \text { Turn Left } \\ \text { Turn Right } \end{array} \\ \hline \end{array}$
56	P00	ISR	0	
57	P27	CAM	1	Input Selector, Timing
58	P26	S1	1	IInput Selector, Position Detect
59	P25	S2	1	
60	P24	S3	1	
61	P23	S4	1	
62	P22	S5	1	
63	P21	S6	1	
64	P20	S7	1	

FRONT END PACK

- Except G model

- G model only

- SCHEMATIC DIAGRAM (TUNER \& LCD)

The previous page is reprinted in exploded form over the following 4 pages

TOP	1 OF 4	2 OF 4
BOTTOM	3 OF 4	4 OF 4

NOTICE	
(J)....	Japanese model
(U)....	U.S.A model
(C) \cdots.	Canadian model
(A) $\ldots .$. A	Australian model
(G).... E	European model
(B) \cdots. ${ }^{\text {a }}$	British model
(R)....	General model
)....	RP model

Point (1): $\mathrm{x} \mathbb{N}$

1C1: LA1266

IC3:

IC3:

IC501: LC7583

* All voltage are measured with a $10 \mathrm{M} 2 / \mathrm{N}$ DC electric volt
- meter. Components having special characteristics are marked \triangle Components having special characteristics are marked \triangle
and must be replaced with parts having specifications equal to those originally installed. to those originally installed.
Schematic diagram is subject to change without notice.

An oreme

The previous page is reprinted in exploded form over the following 4 pages

TOP	1 OF 4	2 OF 4
BOTTOM	3 OF 4	4 OF 4

PIN CONNECTION DIAGRAM OF TRANSISTORS, DIODES AND ICS.

29

All voltage are measured with a $10 M 2 / V D C$ electric volt Components having special characteristics are marked $\triangle \Delta$
and must be replaced with parts having specifications equal
to those originaly installed to those originally installed
Schematic diagram is subject to change without notice.

- SChEMATIC DIAGRAM (FUNCTION)

The previous page is reprinted in exploded form over the following 4 pages

TOP	1 OF 4	2 OF 4
BOTTOM	3 OF 4	4 OF 4

(2)

Point (3): D3 to Do
(Pin 6 to of 9 (C305)

Point(4): $\overline{\text { RES }}$

[^0]PARTS LIST Components having special characteristics are marked \triangle and must be replaced with parts having specifications equal to those originally installed．
－Carbon resistors（ $1 / 6 \mathrm{~W}$ or $1 / 4 \mathrm{~W}$ ）are not included in the ELECTRICAL PARTS
ELECTRICAL PARTS List．For the parts No．of the carbon resistors，refer to P． 42.

$\begin{aligned} & \text { Ref. } \\ & \text { noo. } \end{aligned}$	PaRT Mo．	Description		部 品 名	Remarks	Markets	二ット
	Vks20700 WK520900 UK520800 Uk520500	FIRCTIOH CIRCIIT Board functror circuit board finction clrcuit board FuMctiol circuit board					
	FA153820	mylar film cap	8200pF 50V	マイラーコン	C345， 346		
	$\begin{array}{\|l\|} \hline \text { FA153910 } \\ \text { FA154560 } \\ \text { FA154680 } \\ \text { FA154330 } \\ \text { FA155390 } \end{array}$	hylar film cap mylar film cap hylar film cap hylar film cap hylar film cap	9100 pF 50 V 0.056 uF 50 V 0.088 uF 50 V 0.33 F 50 V 0.39 uF 50 V	$\begin{aligned} & \text { マイラーコン } \\ & \text { マイラーコン } \end{aligned}$	$C 311,312$ C347，348 C341，342 C309，310 C343，344		
	$\begin{array}{\|l\|} \hline \text { VK398700 } \\ \text { FG212100 } \\ \text { FG212220 } \end{array}$	multilayer hylar film cap cerahic cap CERAMIC CAP	0.1 uF 50 V 100 pF 50 V 220 pF 50 V	\| 積層マイラーコン	C384， 385 C333， 334 C303，304，331，332，323， $317-320,324,327,328$. 335,336		
	$\begin{array}{l\|} \hline \text { FG212220 } \\ \text { FG212100 } \\ \text { FG212220 } \\ \text { FG213680 } \\ \text { FG214100 } \end{array}$	Ceramic cap CERAMIC CAP Ceramic cap ceramic cap CERAMIC CAP	220 pF 50 V 100 pF 50 V 220 pF 50 V 6800 pF 50 V 0.01 uF 50 V	$\begin{aligned} & \text { セラコン } \\ & \text { セラコン } \end{aligned}$	$\mathrm{C} 301,302$ $\mathrm{C} 321,322,325,326$ $\mathrm{C} 321,322,325,326$ $\mathrm{C} 353,354$ $\mathrm{C} 368,372,373,381$	$\begin{array}{\|l\|} \hline G \\ U, C, R, A, B \\ G \end{array}$	
	$\begin{array}{\|l\|} \hline \text { VF611200 } \\ \text { vG286300 } \\ \text { VG287200 } \\ \text { VG287600 } \end{array}$	multilayer ceramic cap electrolytic cap electrolytic cap electrolytic cap	0.1 uF 50 V 220 uF 6.3 V 10 uF 16 V 100 uF 16 V	$\begin{array}{\|l} \hline \text { 積層セラコン } \\ \text { rミコン } \\ \text { ヶミコン } \\ \text { ヶミコン } \end{array}$	C3378，379 C307， 308 C374， $382,339,340,369$, 370 C371，337， 338		
	$\begin{array}{\|l\|} \hline \text { VG287800 } \\ \text { VG288800 } \\ \text { vG290100 } \\ \text { VG290300 } \\ \text { VG290500 } \\ \hline \end{array}$	electrolytic cap electrolytic cap electrolytic cap electrolytic cap electrolytic cap	$330 u F$ $16 V$ 100 uF 25 V 0.22 uF 50 V 0.47 uF 50 V 1 uF 50 V	$\begin{aligned} & \text { ケミコン } \\ & \text { rミコン } \\ & r ミ コ ン ~ \\ & r ミ コ ン ~ \\ & \text { rミコン } \end{aligned}$	$C 375,388,303$ $C 315,316,355,356$ $C 349,350$ $C 329,330,386,383$ $C 305,306,351,352,377$		
	VG290600 UK166100 VB170100 vB056900 HV453220	flectrolytic cap electrolytic cap electrolytic cap COIL flame proof carbon resistor	2.2 uF 50 V 1 uF 50 V 4.7 mF 5.5 V 220 uH 2.2Ω $1 / 4 \mathrm{~W}$	$\begin{aligned} & \text { ケミコン } \\ & \text { BPヶミコン } \\ & \text { ハッックアッブケミコン } \\ & \text { コイル } \\ & \text { 不橪化カーボン抵抗 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} 313,314 \\ & \text { C380 } \\ & \mathrm{C} 376 \\ & \mathrm{~L} 301,302 \\ & \mathrm{R} 400 \end{aligned}$	G	
	HV454100 H4455100 HV455470 XA956A00 XB247A00	flame proof carbon resistor flame proof carbon resistor flame proof carbon resistor IC IC	10Ω $1 / 4 W$ 100Ω $1 / 4 \mathrm{~W}$ 470Ω $1 / 4 \mathrm{~W}$ NJM2088S uPC 1570 HA	不橪化カーホン抵抗不橪化カーホン抵抗不橪化力ーホン抵抗 IC 1 C	R402，403 R319，320 R371，372 IC301 IC302		
	XF 494 A 00 $\mathrm{IG065510}$ $\mathrm{XI804C00}$ $\mathrm{VF926500}$ VK 475200	IC IC IC light detecting module ROTARY SHITCH	LB1641 H．JM78L05A 5V M50747－xXX GP1U501X SRBA	$\begin{array}{\|l} \hline \text { I C } \\ \text { I C } \\ \text { I C } \\ \text { リモコン受光ユニット } \\ \text { ロータリーSW } \end{array}$	IC303，304 IC307 IC305 II301 S4318		
	VJ786400 KA906380 UK． 45500 LB202260 LB401030	ROTARY SUITCH PUSH SWITCH PUSH SUITCH Pin JaCk PIN JACK	SRRZS4 SPUI21 $4 P$ T5857－A	$\begin{aligned} & \text { ロータリーSW } \\ & \text { ブッシュSW } \\ & \text { プッシュSW } \\ & \text { ピンシャック } \\ & \text { ビンジャック } \end{aligned}$	SU316 SW301－315 SU317 PJ301 PJ302，304		

＊New Parts（新規部品）

Ref．	PART Mo．	Description			部 品 名	Remarks	Harkets	\％
	VG440400 VG44040 VG42600 LB201880 BB070000	zener diode Zener dIode Zener diode FUSE HOLDER PIN matal，ground	MTZJ13A HTZJ13A MTZJ24C PC－FH1		$\begin{aligned} & \text { ツェナーダイオード } \\ & \text { ッェナーダイオード } \\ & \text { ッェナーダイオード } \\ & \text { ヒュースホルダビ } \\ & \text { アース金具 } \end{aligned}$	$\begin{aligned} & \mathrm{D} 108,109 \\ & \mathrm{D} 124 \\ & \mathrm{D} 114,115,126 \end{aligned}$	R	
	$\begin{array}{\|l\|} \hline \text { VB966900 } \\ \text { BB071360 } \end{array}$	PIN terhinal．sCREM	$\begin{array}{\|l\|} \hline \text { IHSA-6024 } \\ 8.3 \times 13 \\ \hline \end{array}$		$\begin{aligned} & \text { スタィルビン } \\ & \text { ネジ蝡子 } \end{aligned}$			
	YK519700 KK519800 UK519600 VK520000 VK519000$\|$	tuner ctrciit board TUNER CIRCUIT bOARD tuner circuit buard tuier crrcuit board tuner circuit board					$\begin{aligned} & \mathrm{R} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{U}, \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	
	FA153100	hylar fila cap	1000 oF 50 V 2700 pF 50 V 3900 pF 50 V 0.047 FF 50 V 0.1 uF 50 V		マイフーコン	C45，48		
	FA153270	hylar flla cap			マイラーコン	C41，43		
	Fal53390	hylar filh cap			マイラーコン	C46，47		
	FA154470	hylar filh cap			マイラーコン	c34		
	FA155100	hylar flum cap			マイラーコン	C18		
	UT452470	Polypropylene fllh cap	470 PF 100 V 390 FF 100 V 680 FF 100 V 33 FF 50 V 47 pF 50 V		PPコン	C36，37	A，B	
	UT452390	PoLYPROPYLEEE FLLM CAP			PPコン	c36，37	${ }^{\text {a }}$	
	UT452680	Polypropylene fluk cap			PPコン	［36，37	U．C	
	v $\ 761200$	cernaic cap			セラコン	c19，28		
	VF466700	CERAHIC CAP			円筛セラコン	C16		
	VF468800	CERAMIC Cap	1700 FF $50 V$ 470 FF 50 V 1000 pF 50 V 0.01 uF 16 V 0.022 uF 25 V 0		円筬セラコン	c21	U，C，R，A，B	
	VF466900	cernic cap			内筒セラコン	c38		
	vF467000	cerahic cap			円筒セラコン	C11，14，15		
	VF467300	ceramic cap			円筒セラコン	c5，8－10，23，27		
	vG280100	cerahic Cap			円筒セラコン	c2		
	VJ599000	cerahic cap	$0.047 u F$ 16 V 10 uF 16 V		や筬セラコン	C3． 49		
	V1842200	electrolytic cap			ヶミコン	$\mathrm{C} 4,12,13,20,26,31,39$, 42		
	v1842600	electrolytic cap	$\begin{aligned} & 100 \mathrm{uF} \\ & 330 \mathrm{uF} \end{aligned}$	164	ケミコン	c6， 17		
	v1842800	Electrolytic cap		16 V	ヶミコン	C1		
	V1848800	Electrolytic CAP	$\begin{aligned} & 0.47 \mathrm{uF} \\ & 1 \mathrm{uF} \\ & 2.2 \mathrm{uF} \\ & 3.3 \mathrm{uF} \\ & 4.7 \mathrm{uF} \end{aligned}$	50 O	ケミコン	C32		
	vi844900	electrolytic cap		50 V	ヶミコン	C7，29，30，33，40，44		
	V1845000	electrolytic cap		50 V	ケミコン	c22		
	v1845100	Electrolytic cap		500	ヶミコン	C25		
	v1845200	electrolytic cap		50 V	ヶミコン	c24		
	UK166220	Electrolytic cap	2.24 F 50V		BPrァミコン	${ }^{\text {c35 }}$		
	GE901850	COLL，HMUCTOR	39 mH		固定インダクター	L4，5		
	$v 1546100$	cail	220 H		固定コイル	L1－3		
	GE100470	an coil	${ }^{450 \mathrm{KHz}}$		AM IFTコイメ	T2		
	GE220530	Filter	114 KHz		LCフィルター	13	G	
	VC218600	COIL，FM Detect	10.7 HHz		F M 㭲波コイル	11		
	16158100	IC	LA3401		I C	IC3		
	X8760900	IC	La1266		1 C	1 Cl		
	x8818800	IC	L47000\％		I C	IC2		
	VF541200	SLIDE SUITCH	SSSF11		ステイドSW	SU1	R	

－EXPLODED VIEW

NECHANICAL PARTS Note ）\varnothing ：Diameter

Rer．	PART NO．	Description		部 品 名	Remarks	Markets	\％，
01	VK543500	Panel ulit		パネルコニット	BL	U，C，，，A，B	
01	VK543600	Panel unit		パネルコニット	BL		
a1	vk543700	Panel unit		バネルコニット	T	U，C，R，A，B	
01	VK543800	Panel ulit		パネルコニット	T		
01－1	v883880	windou		ウインドゥ			
01－2	V1897700	LENS		レンス			
01－3	vk863200	dapler	6／55	タッパー			
02	IX620970	transistor	2SA1491 0，P，Y	トランジスタ			
03	14620980	Transistor	$2 \mathrm{SC3855} 0, \mathrm{P}, \mathrm{Y}$	トランシスタ			
04	VK232400	RADIATOR ASS＇y		ラジェータASSY			
05	VK195900	SHEET	19×24	シート			
o6	VK538000	mail circuit board		メインシート		A，B	
o6	vK537900	main circuit board		メインシート		R	
06	NK537700	main circuit board		メインシート		v	
06	vK538100	mail circuit board		メインシート		a	
06	VK537800	MAIL CIRCUIT Board		メインシート		c	
07	VK520800	Function circuit board		ファンクションシート		A，B	
07	VK520700	Function circuit board		ファンクションシート		R	
07	VK520900	function circuit board		ファンクションシート		G	
07	VK520600	Function circuit board		ファンクションシート		u，c	
08	VK519800	TUNER CIICCUIIT Board		チューナシート		A	
08	VK519700	tuier Circuit bokrd		ティーナシート		R	
08	VK519900	tuner circuit board		チューナシート		B	
08	VK519600	Tuner CIrcuit board		テューナシート		リ，	
08	VK520000	tuner circuit baard		ティーナシート		g	
09	VK520100	LCD CIRCUIT Board		LCDシート			
10	x1641800	Pouer trahsforner		電源トランス		c	
10	X1840n00	pouer transporher		電源トランス		v	
10	xi644n00	power transforher		電源トランス		${ }^{\text {i }}$	
10	$\times 1643000$	poier transforher		電源トランス		A，B	
10	$\times 1642400$	Pouer transforher		電源トランス		R	
11	vE229900	Pouer cord ass＇Y		パワーコードASSY		R	
11	vE042900	Pouler cord ass＇y		パワーコートASSY		A	
11	vK815600	Pouver Cord ass＇y		パワーコートASSY		в	
11	vE043400	Pouler Cord ass Y		パワーコードASSY		a	
11	H6002220	Povier Cord	10 A	電源コート		O．C	
12	vc626100	ac outlet	S2－7399	電源コネクタ			
12	vJ775000	ac outlet		へCアウトレット			
13	C8620190	CORD STOPPER	CH－22B	コードストッパー		R，A，b，G	
13	CB62020	Cord stoprer	$\mathrm{CH}-22 \mathrm{C}$	コートストッパー		U， C	
14	vk233300	Chassis		シャーシ アートベース			
15	vk236100	SUB Chassis		サブシャーシ（T）	T		
15	vk235000	SUB Chassis		サブシャーシ（B）	BL		
16	vK443600	botton cover		ホトムカバー			
17	vk234000	frame Side		フレームサイト			
18	vk231300	Rear panel		リヤバネル U		U	
18	vk231400	rear panel		リヤバネル C		c	
18	vk231500	rear panel		リヤバネル R		R	
18	vk231500	rear pahel		リヤバネル A		A	
18	पk231700	rear paiel		リヤバネル B		B	
＊Ne	arts（新竦	規部品）				：Japan	

Parts List for Carbon Resistors

Value	1/4W Type Part No.	1/6W Type Part No.	Value	1/4W Type Part No.	1/6W Type Part No.
1.0 ת	HJ353100	HF853100	$12 \mathrm{~K} \Omega$	HJ35 7120	HF857120
1.8 ת	HJ353180	*	$15 \mathrm{~K} \Omega$	HJ35 7150	HF857150
2.2Ω	HJ35 3220	HF853220	$18 \mathrm{~K} \Omega$	HJ35 7180	HF857180
3.3 ת	HJ353330	HF853330	$22 \mathrm{~K} \Omega$	HJ35 7220	HF857220
4.7 ת	HJ35 3470	HF853470	$27 \mathrm{~K} \Omega$	HJ35 7270	HF857270
5.6Ω	HJ35 3560	HF853560	$33 \mathrm{~K} \Omega$	HJ35 7330	HF857330
10Ω	HJ35 4100	HF854100	$39 \mathrm{~K} \Omega$	HJ35 7390	HF857390
15Ω	HJ35 4150	HF854150	$47 \mathrm{~K} \Omega$	HJ35 7470	HF85 7470
22Ω	HJ35 4220	HF854220	$56 \mathrm{~K} \Omega$	H 3357560	HF857560
27Ω	HJ35 4270	HF854270	$68 \mathrm{~K} \Omega$	HJ35 7680	HF857680
33Ω	H.335 4330	HF854330	$82 \mathrm{~K} \Omega$	HJ35 7820	HF857820
39Ω	HJ35 4390	HF854390	$91 \mathrm{~K} \Omega$	HJ35 7910	HF857910
47Ω	HJ35 4470	HF854470	$100 \mathrm{~K} \Omega$	HJ35 8100	HF858100
56Ω	HJ35 4560	HF854560	$120 \mathrm{~K} \Omega$	HJ35 8120	HF858120
68Ω	HJ35.4680	HF854680	$150 \mathrm{~K} \Omega$	HJ35 8150	HF858150
82Ω	HJ35 4820	HF854820	$180 \mathrm{~K} \Omega$	HJ35 8180	HF858180
100Ω	HJ355100	HF855100	$220 \mathrm{~K} \Omega$	HJ35 8220	HF858220
110Ω	HJ355110	HF855110	$270 \mathrm{~K} \Omega$	HJ35 8270	HF858270
120Ω	HJ355120	HF855120	$330 \mathrm{~K} \Omega$	HJ35 8330	HF858330
150Ω	HJ355150	HF855150	$390 \mathrm{~K} \Omega$	HJ35 8390	HF858390
160Ω	HJ355160	*	$470 \mathrm{~K} \Omega$	HJ35 8470	HF858470
180Ω	HJ355180	HF855180	$560 \mathrm{~K} \Omega$	HJ35 8560	HF858560
220Ω	HJ355220	HF855220	$680 \mathrm{~K} \Omega$	HJ35 8680	HF858680
270Ω	HJ355270	HF855270	$820 \mathrm{~K} \Omega$	HJ35 8820	HF858820
330Ω	HJ355330	HF855330	$1.0 \mathrm{M} \Omega$	HJ35 9100	HF859100
390 ת	HJ355390	HF855390	$1.2 \mathrm{M} \Omega$	HJ359120	*
470Ω	HJ355470	HF855470	$1.5 \mathrm{M} \Omega$	HJ359150	HF859150
510 ת	*	HF855510	$1.8 \mathrm{M} \Omega$	HJ35 9180	HF859180
560 ת	HJ355560	HF855560	$2.2 \mathrm{M} \Omega$	HJ35 9220	HF859220
680Ω	HJ35 5680	HF855680	$3.3 \mathrm{M} \Omega$	HJ35 9330	HF859330
820Ω	HJ35 5820	HF855820	$3.9 \mathrm{M} \Omega$	HJ35 9390	*
910 ת	HJ35 5910	HF855910	$4.7 \mathrm{M} \Omega$	HJ35 9470	HF859470
$1.0 \mathrm{~K} \Omega$	HJ35 6100	HF856100			
$1.2 \mathrm{~K} \Omega$	HJ35 6120	HF856120			
$1.5 \mathrm{~K} \Omega$	HJ35 6150	HF856150			
$1.8 \mathrm{~K} \Omega$	HJ35 6180	HF856180			
$2.0 \mathrm{~K} \Omega$	HJ35 6200	HF856200			
$2.2 \mathrm{~K} \Omega$	HJ35 6220	HF856220			
$2.4 \mathrm{~K} \Omega$	HJ35 6240	HF856240			
$2.7 \mathrm{~K} \Omega$	HJ35 6270	HF856270		1/4W Type	1/6W Type
$3.0 \mathrm{~K} \Omega$	HJ35 6300	HF856300		$\mathrm{H} 335 \bigcirc \bigcirc \bigcirc \bigcirc$	HF85OOOO
$3.3 \mathrm{~K} \Omega$	HJ35 6330	HF856330			
$3.6 \mathrm{~K} \Omega$	HJ35 6360	HF856360			
$3.9 \mathrm{~K} \Omega$	HJ35 6390	HF856390		111 $=$	D
$4.7 \mathrm{~K} \Omega$	HJ35 6470	HF856470			
$5.1 \mathrm{~K} \Omega$	HJ35 6510	HF856510			
$5.6 \mathrm{~K} \Omega$	HJ35 6560	HF856560			
$6.8 \mathrm{~K} \Omega$	HJ35 6680	HF856680			
8.2 K Ω	HJ35 6820	HF856820			
$9.1 \mathrm{~K} \Omega$	HJ35 6910	HF856910			
$10 \mathrm{~K} \Omega$	HJ35 7100	HF857100			

[^0]: * All volta
 meter.

 Components having special characteristics are marked \triangle
 and must be replaced with parts having specifications equal
 to those originally installed.
 Schematic diagram is subject to change without notice.

